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Heating and phase transitions of dust-plasma crystals in a flowing plasma
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A three dimensional particle simulation is used to study hexagonal dust crystals in flowing plasmas. The
flowing velocityvg is mesothermalz(Ti<v0< vTe)’ which is a typical situation for dust particles confined in
industrial plasmas and plasma experiments. Unlike for the Yukawa sy&ebye-Hickel shielded dustwe
find parameter regimes where a hexagonal dust crystal is stable. This is due to the wakefield generated around
the individual particles which causes attractive interparticle forces along the axis of the plasma flow. These
attractive forces cause a rather strong binding of the crystal since the simulation shows that solid-fluid transi-
tions occur at a much lowdr value (higher dust temperaturéhan for the Yukawa system. Stability of a
hexagonal dust crystal is found to depend strongly upon the gas neutral pressure since stable crystal structure
is obtained for dust-neutral collision frequenciggabove some threshold valygg. For y4< yqo the ion flow
will excite crystal wavegdphonon$ where the amplitude of these waves grows as a function of time. This
instability will either saturate due to nonlinear lattice waves or continue until the dust crystal structure even-
tually melts.[S1063-651X97)02106-5

PACS numbgs): 52.35.Qz, 52.65-y, 52.40.Hf, 52.25.Kn

[. INTRODUCTION dividual hexagonal layers align under each otHeér—12.
We examine the stability of such a hexagonal crystal
A Yukawa system, or system of charged particlesstructure by a three dimensionéD) particle simulation.
shielded by a Debye-Hikel potential, has previously been Plasma simulations like these have previously been applied
studied by computer simulations in several papdrs3].  to 2D crystald9]. This simulation is, however, the first self-
Such a system provides a good model for dust particles engonsistent 3D simulation using the interparticle forces gen-
bedded in a stationary plasma or in a flowing plasma, as longrated by the plasma flow. Our simulation shows, for in-
as the flow velocity (relative to the dustis considerably —stance, that hexagonal crystal structures may be stable for a
smaller than the ion thermal velocity; . However, asy,  Sufficiently high neutral pressure. Stability of such a crystal
becomes comparable to or larger thapl an asymmetrical s_tructure will, of course not be found from a Yukawa moc_iel,
. i e . since the stability is strongly correlated to the wakefield
shielding potential occurs around the individual particles, foraround the individual dust particles. To calculate the plasma
both subsonic and supersonic flows with respect to the iongotential we have to take into account the wakefield from a
acoustic velocityc; [4—6]. This implies that a dust particle in  |arge number of dust particles, since the individual wake-
industrial plasmas and plasma experiments very seldom cafe|ds will superpose and create an interference pattern. This
be modeled as a Yukawa system, since dust normally is cofinterference pattern is calculated using periodic boundary
fined in the regions W|th;0>vTi (in the sheath or at the cgnditions.
sheath edgd 7]. A very interesting result obtained from the simulations is
In this paper we introduce a new method for finding theexcitation of crystal waves for a sufficiently low neutral pres-
wake or asymmetric potential around dust particles in a mesure. This observation is in accordance with models pre-
sothermal plasma flow. The method involves computing thesented in Refd.13] and[14]. The simulations also show that
eigenvalues to the flow model, which again are used to dethis instability has a profound influence on the dust tempera-
couple the linear equations. A linear model for a mesotherture, and may in some cases melt the dust crystal. It should
mal plasma wake contains both an elliptic and a hyperbolike noticed that self-excited dust waves also have been ob-
solution[4,5]. The elliptic solution gives a purely repulsive served in experimen{d5,16. Waves like these are likely to
potential between dust particles inserted in this plasma, whilée either ionization waves or dust-acoustic-like waves driven
the hyperbolic solution has been suggested to cause attragy the ion flow[15,16. Recently Refs[17] and[18] have
tive interparticle force$8], due to its oscillating nature. It is pointed out that dust-acoustic flowing instabilities may be
also believed that the hyperbolic solution, describing ionpresent for parameters typical for industrial plasmas and
acoustic waves excited by the charged dust object, may bglasma experiments, where both papers were considering
the explanation for the observed vertical alignment of dusiveakly coupled dust particles characterized by the Coulomb
particles[6,9] in plasma experiments. Here the dust particlescoupling parametef<1. Flowing instabilities for weakly
typically, form hexagonal lattices where the particles in in-coupled dust particles have also been investigated by Ref.
[19], using a particle-in-cell simulation. For this paper we
show numerically that flowing instabilities are also present in
*Electronic address: frank@phys.uit.no strongly coupled dust plasmaB#1), and that this instabil-
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ity may have a profound influence on both the crystal melt-created by the dust particles are assumed to be small, so that

ing and the final dust temperature. nonlinear terms may be neglected. For a stationary flow
(d7=0) with Mach numbeM parallel to theZ direction, we
Il. DUST-PLASMA MODEL obtain, after combining Eq$l) and(2),
The plasma, in our quasiparticle approach, will be de- M2&§N1=—V§Q)1+ eViNl—yMale, (6)

scribed by a two-fluid model including flowing ions and

Boltzmann electrons with temperatufle, and densityn,. N7
The 3D ion flow is characterized by density and velocity Vi, =N+ P+ - 713 S(X=X)). (7)
v; which are computed from continuity and force equations. =1 To%p
This force equation includes electrostatic force, pressure
force from adiabatic ions with temperatufg, and ion- II. ISOLATED DUST PARTICLE
neutral drag. We will cast the fluid equations into dimension- A. Point particle
less forms
To solve the fluid equations we will first compute the
dtN;+ V- (N,V;) =0, (1) Green solution where the suﬁf‘:lZ]—S(X—Xj) in Eq.(7) is
L substituted with—46(X—X;). For simplicity we will as-
sume thisé source to be located on tiaxis.
ITViTVi- VxVi=Vy® = GEVNi ~ Wi @) The first step of the solution procedure involves a Fourier

, . . . transformation  u(k,Z)=(472) "1fu(X)exp(=ik-R)dR
by introducing normalized variableS =wyit, X=X/X\p,  gyer the directiorR=(X,Y) perpendicular to the flow, with
Vi=vi/ci, Ni=n;/ng, and®=—e¢/KT,. Timet has here 56 numbek = (ky,ky). Equationg6) and(7) then reduce
been 2normal|zed Ugy the —ion plasma frequencyy, yyo coupled ordinary differential equations,
wpi=[e°Zing/(em;) 7', whereng is the electron density at
the plasma potentiaip=0. Distance is normalized by the  \2:2G, = — Gy— Gy + 7 18(Z—Z,)+ ed2Gy— ek?Gy
electron Debye lengthy=[ ;K To/(€2ny) Y2 and velocity z ' z
by the cold ion-acoustic velocity,=[ Z;kgTe/m;]¥2 In Eq. — MGy, (8
(2) we have also introduced the two normalized variables

28 _L2A A A 1l >
e=3T;/(ZiTe) and y=v;/wp; 3 97Gp=K"Go+ G+ Go—m "8(Z=Z)), ©)

giving the ion-electron temperature ratio and dimensionles¥/hereé Gy and G, are the Fourier transforms of the ion
ion-neutral collision frequency, respectively. density and plasma potential, respectively. .
Equations(1) and (2) may now be combined with Pois- 1S shown in Ref[4], which neglected ion-neutral colli-
son’s equation, where the space charge contribution from th&}ons (r=0), that Eqgs.(8) and (9) contain both an elliptic
dust particles is included by diffuse objectss;(x) multi- and a hyperbolic solution. We will show in the Appendix
plied by their charge numbeét; . Heres; is normalized with "OW these two types of solutions may be decoupled for

respect to the physical space. In theX space the Poisson ¥=0, where the equation s&3) and(9) reduces to

equation yields N A 3
g y BGy=x, Gy 7 1982 2)), (10
N
z, ) )
V§<<D=Ni—exp(—®)+;1msj(x), 4 $2Go=\_ Gy 71,82~ 2)). (12)

A AT )
where it is convenient to introducg =\3s; normalized H(_erleA[G},Gi] reIate§ to the Greeh funct'lonsf as
with respect to the new dimensionlesX space P [Gn.Gol whereP is the transformation matrix given

[/S,(X)dX=1]. in the AppendiXsee Eq(A3)]. The terms\ . and\ _ are the
To simulate the dust particles we will use a Gaussiarfigenvalues for the linear flow equatiofisg. (A2)] while
distribution g, andqg, determine the influence of th& source, as shown

in Egs.(10) and (11). The source coefficients given by Eq.

1 0 o (A6) may be written as
Sj:S(X_Xj):Wqu_D(_X” lo ] (5)

1 / ek?
Such a distribution may, to some extent, simulate finite sized Ae—N_| M-—e€
dust particles where the parametecorresponds to the dust
size in units of\p . It is also practical for numerical reasons 1 /)\ N ek? 12
to use a finite distribution, since the plasma potential ob- QZ_)H_)\?\ - TMZ%—¢/" (12)

tained from Eqg.(4) will be nonsingular in the particle loca-

tion. N+, A_, 01, and g, will all be functions of the wave
We now separate the linear and nonlinear parts of Eqaaumberk, the Mach velocityM, and the temperature ratio

(1)-(4) by introducing the deviations N;=N;—1, € given in Eq.(3). Simplified asymptotic solution fok .

V,i=V;—Vg, and®;=® from a homogeneous background may also be found for small and large wavelengths. For

flow given byN;=1, V;=V,, and®=0. The disturbances k=0 we get
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M2—e—1+|M2—e—1] when the dust object is not centered on fheaxis. This
A= 2(M2—¢) (13 enables us to calculate the total potential field from regular
dust crystal structures such as bcc and hexagon, where peri-
while ask— o, the eigenvalues approach odic boundary conditions are applied, and where some of the
particles are off th& axis.
) 1+ ek? The solution from a single Gaussian given by Ex).may
)\+21+k and \_=— . (14) be f db ;
MZ2—¢ e found by the same procedure as for theolution. The

N particle source in Eq. (4 is replaced with
Further on, we will assum®?> e, which normally is the —4mwS(X—X;) and Fourier transformed over the direction
case in the regions where dust is confined in gas dischargegerpendicular to the flowX andY direction. The Fourier
This is due to a lowl; /T, ratio combined with dust confine- transformed equations may then be decoupled into an elliptic

ment in the sheath or in the presheath where the plasma hg&$) and a hyperbolicG3) part[corresponding to Eq$10)

a significant flowing velocity towards the electrodes. Fromand(11)] in the same way as for thé solution. This gives
the Appendix, this yielda , =0 and\ _<0 for all k values

where Eqs(10) and(11) are elliptic and hyperbolic, respec- 2AS. 2AS o[} 2
tively. Solutions of these equations can easily be obtained, 92G1= K161~ —zm_mmexp — = | f(K), (19
assuming an infiniteZ direction, with boundary conditions
Gy(—%)=0, G3(*)=0, G5(—=)=0, andd;G,(—*)=0 ) ) 72

i i inti i ; 2G5 — 1265 i f(k), (20
consistent with the elliptic and hyperbolic nature®f and 0767= k363 = 73250 28X - k), (20
G,, respectively. This yields

1 where the indexS indicates solution from a Gaussian source.
1=§KIlQ1eXD(— k1|Z-Z))), (15  Herewe have introducedZ=Z-Z; and

Q)

f(k)=exp(—k?o?/4)exp —ikyX;—ikyY;).  (21)
. 7 kg tapsin(ky|Z— Z])  if Z2=2Z,
Go= [ 0 if 7<7. (16) Solution of these two equations may now be found using the
I same boundary conditions as for thé& solutions
where k;= N, and k,=\—\_. Finally the Green func- [G(—)=0, G(=)=0, G5(—=)=0, and 9,G5(—=)
tions are found from the transformation =0], which gives
[Gn.Gal"=P[G,,5,]" and by using the inverse Fourier

transform. Since the solution is symmetric with respecttothe. 5 1 Kio? kio AZ
Z axis, it may be written as the integrals 1 Zmr, P 4 f(k)| exp(— kyAZ)ertq —= -
* A ko AZ
Gy=—27 , K(N_+Xg)G1Jo(kR)dK +exp(rkiAZ)erfc ——+—|/, (22)
o0 ~ 2 2
+ + 2 K20
ZWJO k()\+ Ao)GzJo(kR)dk, (17) ng_ a2 X[{— 2 )exquzAZ)f(k)
27TK2
_ oA a AZ  kyo
Go=27 . k(G1—G2)Jo(kR)dk (18) xIm| erf — ——i—— (23
(o

over thek space wherel, is the Bessel function of order \yritten in terms of the complementary error function
zero. These integrals must in general be found ”Umer'ca"y-erfc(z):277*1’2f°°exp(—t2)dt Here Im denotes the imagi-
; )

Convergence of integral6l7) and (18) can be investi-
gated by inserting asymptotical values[Eq. (14)] in Egs.
(17) and (18) together withq,=1 andq,=—1/(M?k?) cor-
responding to largé& values. This shows that integrdl8) is
convergent for alM and € values, except for on thg axis R
whene=0. This is also in agreement with the result in Ref. Gr= —f (N_+X\o)GTexplik-R)dk
[4]. The integral(17) is also divergent on th& axis, even
with a finite ion temperatureei 0). We will show in the A .
next section that the divergencies in both of these integrals +f (M +ho)Grexpik-R)dk, (24)
may be removed by using dust particles with finite size.

nary part of the complex function. Finally these solutions
give the density and potential values through the inverse
Fourier transform

B. Gaussian particle Gi:f (GS-GS)expik-R)dk. (25

We will now consider solutions from a Gaussian distribu-
tion S(X—X;) [Eq. (5] inserted into Poisson’s equatipg. ~ The functionf(k) [Eq. (21)] will now assure that both of
(4)]. Unlike for the § solution, we will also include the case these integrals are convergent fa# 0.
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IV. WAKE INTERFERENCE potential G (Xy) + Gy(X,)___..:

IN A HEXAGONAL PLASMA CRYSTAL P

We will in this section consider the wakefield generated s
by dust particles in regular dust lattices. Regular dust lattices 2
are frequently observed in dust-plasma experiments due to
large electrostatic energy between the individual particles.
Length scales characterizing the spatial periodicity of these
crystals are often much smaller than the total extension of2 L=1.0
the crystal. This allows us to calculate the solution using 1 3
periodic boundary condition in a computational domain lim-
ited byLy, Ly, andL,, to simulate a medium with infinite
extension.

X position

A. Periodic boundary conditions

A plasma potentiadbP obtained from periodic boundaries
may, in principle, be calculated from E@5) by summation
over theN Gaussian particles inside the computation do-
main, and all images of these particles outside the computa
tion box. From a numerical point of view, this method will
be enormously time consuming since it requires summatior
over a large number of particles due to the slow decay of the
hyperbolic part of the solution. Instead we suggest expanding

the solutions as Fourier series in theand Y directions, or FIG. 1. The plasma potential obtained from ion-acoustic wave

interference generated by an infinitely large hexagonal dust crystal.

), (26)  The figures show the wake potenti@h,(Xo) +Gf(X1) in planes
perpendicular to the plasma flow at distantegindicated in the
figure) from the upstream layer. One should notice that the figure at

o : P P ; : L=4 is scaled differently than the others. The calculation is done
which implies periodic boundaries in the€Y directions. - ) .
b P for a subsonic plasma flow with Mach numkdr=0.5 while other

We will limit ourselves to using distributions with spatial R - R
width o considerably smaller than the size of the computa P ameters ara=4,d=4, ¢=0.1,5=0.2, andy=0.075.
tion box. In thi the Fourier fficients Sowill . . . -

on bo S case e rouner coetticien's be 'ywth a=2 instead ofa=4. The result is shown in Fig. 2,

approximately equa] to thg png obtained from a. I:F)u”ewhere we notice a significant reduction in the interference
transform. Th_e Founer coefﬂuen_@l andG; for the elliptic dIield generated by the neighbor particles, compared to Fig. 1.
and hyperbollc_ part of the solution may therefore be. foun We have also shown in Fig. 3 how the interference field
from the previous result, by_SUbSt't”t'”g( and ky with might look, considering a supersonic plasma flow with
2ml/Ly and 2mm/Ly, respectively. We also have 10 solve ;=1 5 The other parameters in this figure are the same as
Eq. (A8) W'Fh periodic bqundar!e§ n the direction instead ¢, Fig. 2. lon-acoustic wave interference is also seen in Fig.
of the previous boundaries af "_‘f'”"y- .3, although these are smaller than for the corresponding sub-
In Fig. 1 we show a wake field produced from periodic g,ic fioy in Fig. 2. A larger interference field may also be
boundary condition in all directions. We have here used tWoyhaineq for supersonic flows, by increasing the separation
particles atXo=(0,0,0) andX,=(Lx/2,L.y/2,0) as shown in 5 ‘his is jllustrated in Fig. 4, where we have used the same

the uppermost figure. When we UB@Z‘/ga: Ly=a, and  parameters as in Fig. 3, but increasedo 4. This figure
L,=d, these two particles w!ll,_tc_)gether with the periodic yields a rather complex plasma potential.
boundaries, be equal to an infinite hexagonal crystal. Thé

particle distance within the hexagonal layer will &evhile
d is the separation distance between the different layers. We
show the wakefield or interference pattern, in planes parallel If we consider a subsonic flow and reduaefrom the
to the X-Y plane, at four different distancesfrom the up- value of 2 used in Fig. 2, to values close to 1, the wakefield
stream layer. AtL=1 we observe cylindrical symmetric becomes less complex, and is close to a plane wave propa-
waves in the vicinity of the dust particléat the center and at gating in the direction of the plasma flowZ (direction.
the edgekssuperposed on an interference field. These kinds of waves occur only for subsonic flows. For
The interference field becomes dominantlat2 and supersonic flows we obtain mainly an exponential damped
L =3 where a hexagonal interference pattern can be seen, fpfasma potential as approaches 1.
example, in the shape of the plateau in the center of the This numerical result can be understood in view of the
figure atL=2. It is interesting to notice that this plateau hasFourier transformed equations given in Sec. Il A. Plane
the same shape as the Brillouin zones for electromagnetiwave solutions may be found by assuming that the main
wave diffraction produced by a hexagon. contribution to the wake comes from wave numblersose
As an illustration of how the wakefield changes when theto 0. In this limit we gefg; =0 andqg,=—1 from Eqg.(12) in
interplane distance is reduced, we have recalculated Fig. 1the case of a subsonic flow. Supersonic flows, on the other

_ 2milX  2@imY
u(R,Z)=2 u(l,m,Z)ex
I,m I—x I-Y

B. Plane wave solution
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potentlal Go(X,) + Go(X,)

X position

FIG. 2. Plasma potential given by the wake potential FIG. 4. Calculations done for the same parameters as in Fig. 3,
GP (Xo) +Gh(X4). The calculation is done for the same parametersbut witha=4.
as in Fig. 1, but witha=2.

—— [1-M%+e\1?
hand, yieldg,=1 andq,=0. Sinceq, andg, determine the ko A ( M?—e
source[see Eq(12) or (A6)] for the elliptic and hyperbolic
part of the solution, respectively, this shows that plane wavegbtained from the negative eigenvallsee Eq.(13)]. It is
may only exist for subsonic flows. The valle=0 also &lS0 possible to estimate the damping rate of the plane wave
gives, from Eq(13), a plane wave number due to ion-neutral collisions. This can be done by neglecting

the nondiagonal term in EGA8), which yields the damping
frequency

(27)

potentlalG (Xo) + Go(Xy)

1-M?+e

To find the plane wave solution itself, we will assume
small dust particles¢<1) where an undamped solution is
approximately equal to thé solution given by Eq(16). A
weakly damped version of this solution generated from a

Fourier series instead of a Fourier transform gives the plane
wave solution

o]

Ghe— —2T S exf — yo(AZ+ nd)siko(AZ+ )]
N 0 0

(29

for a hexagonal crystal. Each term in this sum gives the
electrostatic contribution from a hexagonal layer at distance
nd. For y,>0 this sum will be convergent and gives

8
Gg)z — W D {eX[Z( ')/OAZ)SWI( koAZ)

+exd — yo(AZ+d)]sinky(d—AZ)]}, (30
FIG. 3. Plasma potential obtained from a supersonic plasma

flow with M=1.5. The other parameters are the same as in Fig. 2yhere
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FIG. 5. The plane wave solutiofEq. (30)] compared to the 3 r
numerical 3D solution on th& axis, fora=1 anda=2. Other ] 0-_.':,‘ ........................... ]
parameters which are constant a#=0.5, e=0.1, y=0.075, gl \;m. .................... ]
0=0.2, andd=5. N eemmTTTTTTTTTT T
A5l ~-- .
D =1—2exp — yod)cog kod) + exp( — 27od) 2 4 6 8
Yo 0 Yot hexagonal layer separation d (units of Ap)
From the solution we notice that the amplitude@f, will FIG. 6. The ratio between the Madelung enetgand T as a

maximize at distancesl where kod=n2m (n=12,...).  fynction of the distancel between the hexagonal layers. Here the
This will be the resonance criterion for the hexagonal crysta|pper figure shows calculations done =1, a=2, anda=3,
which states that the plasma disturbance will maximize wheRising a subsonic flow velocityM = 0.5), while the lower figure
the layer distance is equal to an integer value multiplied  showsu/T ratios for a supersonic flowM =1.5). In both figures
by the natural wavelength of the plane wave. we have used the parameters 0.1, y=0.075, ando=0.2.

In Fig. 5 we compare the values obtained along4taxis

from the numerical 3D solution, with the plane wave solu- K N 3 K
tion [Eq. (30)]. For the parameters we refer to the figure u= NKe')I<' =T N 2 2, GL(X; 'Xi)_ﬁ_ —.
caption. The solutions for=2 show some deviation while d =17=1 K mo

relatively good agreement is obtained #o+ 1, which indi- (32

cates an almost plane wakefield for the latter particle spaGya e the first term on the right hand side of E82) gives
Ing. the average electrostatic energy of the system. From this en-
ergy we have to subtract the self-energy which has a finite
V. EXCESS ENERGY value foro# 0 [last term on the right hand side of E§2)].
, ) . We also subtract the electrostatic contribution from a uni-
An interesting parameter to determine is the excess €Norm charged backgrounfsecond term on the right hand
ergy Ue, or the energy in excess of the thermal energy of the;jye of Eq.(32)]. This background term is used in Refg]
dust particles. This parameter is interesting since it providegq [3] to get accordance with previous results for a one
useful information about the thermodynamics of the St“dieq:omponent plasméOCP in the limit x—0.

system. For the Yukawa system the excess energy is found to Figure 6 shows the ratio between the excess enefdsg.

be a function of the parameters (32)] and the parametel as a function of the separation
5 distanced between the hexagonal layers. The upper and
I'=Q%/(4mepAKTy) and k=A/\p (1) ower figures show/T for a subsonic K1 =0.5) and super-

sonic flow (M =1.5), respectively, calculated for three dif-
[2,3], whereA is the average spacing between the dust parferenta values @=1, 2, and 3). In the calculations the dust
ticles andT 4 is the dust temperature. However, for dust crys-particles are at rest in the equilibrium positions of a hexago-
tals in mesothermal flows, the number of independent parannal dust crystal, and the energy is therefore identical to the
eters increases. For the quasiparticle model used in this papss-called Madelung energy for the crystal. Thermal motion
the ion flow field depends on the parametbts o, €, and  and crystal phonons will change (see Refs[1-3]) so that
v [see Eq(3)]. All of these parameters will now, in addition the values given in Fig. 6, computed from a stationary crys-

toI' and x, determineU,. tal, only apply to low temperature dust crystals. Other pa-
We will adopt the definition fot, used in Refs[2] and  rameters are found in the figure caption.
[3]. In terms of our Green’s functio®}, wherep refers to In the upper part of Fig. 6 we notice several jumps or

periodic boundaries, this energy may be written as abrupt changes in/I". These jumps correspond to resonance
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distances or distances for constructive interference wherprevent the total crystal structure from being moved by the
waves generated by the individual particles will be in phaseion drag, but will, at the same time, not influence the ther-
Fora=2, for example, we observe local minimum values formodynamical properties of the crystal, since the same force
u/T" at distanced~1.2, 1.7, 2.9, 3.4, ... . By using a is acting on all particles.

particle simulation, it is possible to show that hexagonal lat- The electrostatic force may be computed from the peri-
tices withd close to some of these minimum values will be odic Green’s solutionG}, by adding up the contributions
stable. Asa is reduced to 1 the number of main resonancedrom the N diffuse objects

reduces to Zaroundd=2.9 and 5.6). This is mainly because

we reduce the complexity of the wave by bringing the par- 1 N
ticles within the hexagonal layer closer together. At the sepa- D(Xj)=— P E ZiGg,(XJ- Xi). (39
ration distancea=1, the generated wakefield will be nearly Thpllo 1=1

a plane wave, as shown in Fig. 5. We also get relatively good ) .
agreement between the observed minimum valueufdt W& will now assume that the number of unit charggeson
(d~2.9 and 5.6) and theoretical values for the first two resofn® dust particle are constant and the same for all dust par-
nance distances obtained from E@7) (d=2m/ky=2.63 ticles. If we msgrt this equatlon in E(B3)3and express in
and 4m/k,=5.26). terms of the Wigner-Seitz radius (47A°n/3=1), we ob-

The lower Fig. 6 shows a much less complex behavior oféin
u/T" where all curves obtain only a single minimum value.

N
Wave resonances as in the upper figure, which produce a dzxj _ K> D
large number of minimum values forT", are not seen, even d=2 ?VX; Go(Xj . X)=vaVj—fa, (39

if d is increased above the maximum value of 8 used in the

figure. The reason for this is that the characteristic Waveyherex=A/\p . For a hexagonal crystal this parameter may

lengths in the supersonic wake are much larger than the ong, expressed in terms of dimensionless crystal dimensions
in the subsonic wake. The resonance distances will thereforg andd as xk=[3\3a2d/(8m) ]

be located much farther away from the dust particles where Equation(35) is integrated using a Runge-Kutta method

the”_vv_akem;ield will be ii%n(i)fi?cSantly gargped ;or the i(in-r}eutral of order 4. For each time step we calcula®f(X;,X;) by
coflision firequencyy=u. used. by reducing to, for using a 3D cubic spline interpolation on the wakefield

instance,y=0.0375, we are able to observe several MIN"Gp (0,X) of a particle placed in origin. This wakefield is
mum values fou/I" in the same way as for the upper figure. L : ;
computed initially in the program and stored in an
Ny X Ny X Nz matrix whereNy, Ny, andNy are the number
VI. PARTICLE SIMULATION of uniform discrete values used in the Y, andZ directions,

Numerical simulations have previously been used to studyeSPectively. _
the Yukawa system where, for instance, the excess energy In the numerical examples we initially place the dust par-
may be found from simulation together with critical values UCles in @ hexagon with dimensiorss and d so that the
for the parameterd” and « [see Eq.(31)] causing phase u/F' ratlo is in the \(lClnlty of one of the local minimum
transition. Similar methods may now be used to study oup_osmons shown in Flg. 6. The dust particles are also_|n|_t|ally
flowing plasma system, which has a microscopic shieldingiVen & random velocity, picked from a Maxwellian distribu-
potential of the dust particles very different from the Debye-tion- The dust temperaturi of the distribution is defined as
Hiickel potential. We will exemplify how the differences be- Usual, in terms gf the statistical varianceNRT,/2
tween the microscopic potential for these two systems=(M/2)Z;(Vj—(V))“ where(-) denotes the average value.
change the stability of hexagonal crystals and the crifical !N terms of our dimensionless parameters and from(&g),
value for melting of the crystal. this relation yields

In the plasma simulation the dust parti¢lés moved due
to the electrostatic force acting on the particle. The force r= K
equation may be written in terms of the dimensionless vari- (VB —(V)-(V)"
ablesX, @, and 7= w4t as

2
(36)

5 The dust temperature may therefore initially be specified by
doX; e”oV BIX) — v+ f 33 al value (['y). In the simulation we will also normalize the
d~2 Qn * (%)= vaVj+fa. B3 thermal energy BIKT4/2 in the same way as we did for the

excess energlsee Eq(32)]. This yields
The timet is normalized with respect to the dust-plasma
frequency given in terms of the dust particle cha@emass U= (3NKTy/2)/(NKTy) =3/2. (37
M, and densityn, as w,=[(Q?n)/(e;M)]Y2 The dimen-
sionless velocity/; and collision frequency relate to their
physical values v; and vy, as Vvj=MApwygV; and
vg=wpqYq, respectively. We have also included a collision ~ We will first use the particle simulation to look at dust
term[second term on the right hand side of E§3)] simu-  crystals in a subsonic plasma flow with Mach number
lating dust-neutral collisions and a forég which is equal, M=0.5. A typical result is shown in Fig. 7 where we ini-
but opposite, to the average electrostatic force acting on thially placed N=128 particles in a hexagon structure with
particle [fy=—(eny/Qn)X;Vx®(X;)/N]. This force will dimensionsa=2 andd=3.41, and given them Maxwellian

A. Subsonic plasma flows
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FIG. 7. Particle simulation wher&l=128 dust particles at=0 are placed in a hexagonal structure with dimensien2 and
d=3.41. The dust particles are initially given velocities picked from a Maxwellian velocity distribution with temperature corresponding to
I"'=200. Here the upper left figure shows the time evolution for the ratj@g§ and u—ug)/I" whereu, andu are the normalized kinetic
energy and excess enerfyith valueu, at 7=0), respectively, whild" is the Coulomb coupling parameter. The evolution of the latter of
these parameters is shown in the upper right figure togetherlwithlues perpendiculard(; ) and parallel T') to the plasma flow. The
middle figures show the particle trajectories fram 0 until 7=40. Here we show in the left the dust trajectories as seen from the top
(X-Y plane where only trajectories from a single dust layer are viewed. A similar side view is shown in middle right figidreléne. In
the lower figures we show the particle trajectories in the remaining part of the simulittan =40 until 7=100) in the same way as for
the middle figures. The other parameters used in the simulatioa=aéel, y=0.075,0=0.2, M=0.5, andyy4=2.3.

velocities corresponding tb'=200. The dust-neutral colli- time 7=0 until 7=40, while the lower figures show particle
sion frequency isyy= 2.3 while other parameters are found trajectories similar to the middle figures from=40 until
in the figure caption. 7=100.

The upper left figure shows the evolution of ratios In the initial part of the simulation, from=0 to ~5, we
u/T'=3/(2I') and U—up)/T" as a function of time where get a period where the dust temperature decreakem(
u is the normalized excess enelfdsq. (32)] with valueug at  crease in upper right figuxeThe dust temperature then starts
7=0. The upper right figure shows the paramdfeas a to increase which corresponds to a decrease in the parameter
function of 7 [calculated from Eq(36)] in addition toI'yand  T', from 10" at 7~5 to 10 atr~40. We also notice from the
I', which are calculated as in E36), but with V replaced  upper right figure an almost exponential increase in the tem-
with the velocity components parallel and perpendicular tgperature in this period, and that the crystals still have not
the plasma flow direction. In the middle figures we havemelted atr=40, as indicated by the middle figures. The
shown a top viewleft figure) and side view(right figure of  reason for the observed increase in the dust temperature is
the trajectories generated by patrticles in a single layer fronunstable crystal wavegphonon$ excited by the flowing
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FIG. 8. Particle simulation done in supersonic flow wih=1.5. The layer separation id=1.32 while the dust-neutral collision
frequency isy4=5.0. All other parameters are the same as in Fig. 7. Here the middle and lower figures show particle trajectories from
0= <25 and 25 r<50, respectively.

ions. From7~40 until ~55, the crystal starts to melt with a as for Fig. 7. These parameters giva/& ratio in the vicin-
significant reduction in the crystal wave instability. Around ity of the minimum value shown in the lower Fig. 6. In this
7~55 there is another jump in tiévalue and the instability ~simulation we have used a dust-neutral frequengy-5
finally saturates aroun@~1. From the lower figures we Which is well below the threshold frequengy, for excita-
also see that during the last part of the simulatiom t?on of unst_able cryst_al_wave_s_. Unlike the previous simula-
7= 40 until 7= 100), the crystal becomes completely melted.tion, we notice that this instability saturates before the crystal

We also notice that the particles mainly move parallel to theMelts. The saturation mechanism here is likely to be of a
X direction during the melting, which is an indication of nonlinear nature. This is because the first part of the insta-

crystal waves excited in this particular direction. Wave ac-Pility suggests an exponential growth which gradually dimin-
tivity in the X direction is probably also the reason for the ishes as the dust particle oscillation becomes large, or a typi-

nonuniform distribution of particles indicated by the lower cal behawor for systems which are linear _qnstgble but
figures. nonlinear stable. This kind of nonlinear stabilization was

only seen in the supersonic case.
If we reduce the dust-neutral collision frequency to
v4=2 as shown in Fig. 9 we see that nonlinear effects are no
The dynamic of dust particles may also be simulated inonger able to stop the lattice wave instability, and the insta-
supersonic plasma flows. An example is shown in Fig. 8hility melts the crystal in the same way as in Fig. 7. Similar
where we have used the parametes=1.5, a=2, to the simulation in this figure, we now also get saturation of
d=1.32, andyy=5, while the other parameters are the samehe instability after melting.

B. Supersonic plasma flows
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FIG. 9. Particle simulation done for the same parameters as in Fig. 8, butyyitiduced to 2.5.

VIl. CONCLUSION threshold valueyy, crystal waves with an increasing ampli-
We have in this paper shown that our 3D quasiparticletUde appear in the simulations. The initial phase of this in-

simulation provides good agreement with several experimens-talbility gives an exponential increase in the dust tempera-
re as, for example, shown from thevalue in Fig. 7, from

tal results on dust particles confined in gas discharges. Dust ) g _ ”
plasma experiments show, for instance, that particles easil§™ 2 until 7~40. After this phase, the following two things
crystallize in hexagonal layers aligned on top of each othefight happen.
[10-12. Stable crystal structures like these are also obtained (1) The linear instability enters a nonlinear phase where
in the particle simulations as shown in Fig. 8. Stable solutiorfhe instability saturates before the crystal melts. An evolution
is also found for the parameters used in Fig. 7, if we increaséke this is shown in Fig. 8 and is only observed for super-
the dust-collision frequency, from the value of 2.3 used to sonic flows.
values=2.6. We have also tested the stability in the vicinity ~ (2) The instability manages to melt the crystal and satu-
of other local minimum values afi/I" shown in the upper rates after melting, as shown in Figs. 7 and 9. Unlike ¢&se
Fig. 6, and obtained stable solutions foa,d)=(1,3), where the saturation mechanism is excitation of nonlinear
(2,1.7), and (3,6), when the dust-neutral collision frequencyattice waves, we believe that this saturation is due to the
vq4 IS above some threshold valugg. This threshold will  melting itself. As the crystal melts, the phonons will gradu-
vary between different crystal dimensiona,d), and also ally be lost in the crystal and the dust heating becomes less
between simulations where we have keptd) fixed, but efficient. This also suggests that the streaming instability
changed the number of hexagonal layers, or changed thgives a larger input to the dust kinetic energy in dust crystals
number of dust particles within a layer. than in melted or weakly coupled plasmas as studied in Refs.
When the dust-neutral collision frequengy is below the  [17-21].
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We believe that the observed crystal instability is drivening than a Yukawa crystal, due to the attractive force in the
by the flowing ions due to wave-particle interaction betweerplasma flowing direction.
the plasma fluid and the dust particles, or by the same An effect which is not incorporated in our model, mainly
mechanism as for the previously studied dust-acoustic flowdue to increasing complexity and computation time, is dust
ing instability [17—21). However, all of these papers were charge variation. Dust charge variation is previously found to
only considering weakly coupled dusty plasmas which, ofoe important in weakly coupled dust-acoustic wal@aW),
course, does not apply to our strongly coupled dust crystal@nd is therefore likely to be important also in dust crystal
A recent paper by Melandsi@2] shows, for instance, that Waves. This is because the dust charging happened in a time
the dispersion relation for dust-acoustic-like waves in a 1pscale much faster than the oscillation period so that the dust
Bravais lattice may be very different from the one obtainedcharge manages to adjust to the variations in the surrounding
in the weakly coupled limit. plasma. For the DAW, for instance, charge variation is found

The simulation results show that excitation of phonons ig0 give a maximum correction ot20% in the wave phase
crucial for both the melting of the hexagonal crystal and thevelocity, when the dust to electron space charge ratio
final dust temperature. How the final dust temperature correQN/en| is ~1 (see, for instance, Fig. 1 in ReR5]). This
lates to the instability can be tested by running simulationgatio corresponds to a Havn&sparametef26] of the order
with different y4 values. Asy, reduces, the crystal instabil- 0f 1. Previous studies of DAW have also shown that charge
ity grows faster with a resulting smallrvalue (higher dust ~ variation have a stabilizing effect on streaming instabilities
temperaturesafter saturation. It is interesting to notice that (See, for instance, Reff21]). However, this stabilizing effect
excitation of crystal waves also explains the experimentallycan probably be neglected in most industrial and experimen-
observed temperature increases in the horizontal plane réal plasmas due to the small charging time of dust particles.
ported in Ref.[23], in the melting (liquid) and gaseous
phases. In these phases the dust temperature is found to be ACKNOWLEDGMENTS
significantly higher than the neutral gas temperature. Heating i
and melting of the crystal in terms of excited phonons may_ '€ author thanks J. Goree, G. Morfill, H. Thomas, M.
perhaps also explain why intermediate liquid phases can b%uz!c, and M. Rosenberg for very l_JsefuI discussions on the
stable, since the main energy infakcitation of phononsis subject of dust-plasma crystals. This work was supported by
gradually lost as the crystal melts and the particle motiorfn® Research Council of Norway.
becomes increasingly incoherent.

Oscillation of dust particles, as an important factor for APPENDIX DECOUPLING OF THE WAKE EQUATIONS
phase transitions, has also previously been studied in Refs.
[13] and[14]. Here they consider the stability of two crystal
layers with an intermediate ion cloud causing an attractiv
force acting on dust particles in the downstream layer. |
should, however, be noticed that the stability analysis for thi

As previously shown in Ref§4] and[5], the linear flow

equations Egs. (6) and (7)] contain both an elliptic and a
yperbolic solution. We will in this appendix show how
hese two solutions may be decoupled. The decoupled solu-

system assumes a pure Coulomb potential between the p jons are used to compute the wakefield generated by dust

ticles, and not the self-consistent potential generated by th%artlcles in a plane perpendicular to the plasma flow direc-

plasma flow. The obtained results will therefore only applygggoz‘ @%psrgrlznoar:: ?grlggggsng;a};?lti% blea;(()aung féosrgl t?in
to closely packed dust crystala €\p) since the interpar- up utions, for ’ P wav uti

. . : . considered in Sec. IV.

ticle potential deviates strongly from a Coulomb field when . . .

A;)\p This is. for exampleg glearly seen in Fig. 1, which The Fourier transform of the linear equatiofisgs. (8)
corregbon ds t aﬁ,~2 n ' T and(9)] may be written as the matrix system

Another interesting result obtained from Figs. 7 and 9 is
the criticall" valuel’; for solid-fluid transition. Both figures
show I' . around ~10, or much lower than values fdr,
obtained in Ref[3] for bcc crystals with the Yukawa poten- A AT _ 2 1 aaT
tial. Here they foundl'; between~172 and 378 for the c'c —ILJZ;[/SNi’GEJk’X—pk_\[(_(M —e B 1K)
parameterx between O and 1. However, a recent work by_eXp( )expikiX; =ikyYy),

Rosenfeld 24] points out that thd" values given in Ref.3] [ (14 ek®)(M2—e) 1 —(M2—¢) 2

Jsu=Au—Biu— 725" texil — (Z-Z;)% a?]f (k)b.
(A1)

are too large, both in view of previous simulations, analytical
techniques, and a significant error source detected in[Blef.
Referencg24] suggestd’. values between-172 and 220

for the x range used, not far from the result obtained in Ref.and
[1]. We have also tested our numerical simulation by chang-
ing the wakefield potential to a Yukawa potential and found B= yM |1 0
I'; much closer to the one given in Refd] and[24] than MZ—¢ 0 O

the transition values given in Rdf3]. However, it is inter-

esting to observe that the deviations between Héfsand We will consider cases where the ion-neutral drag does
[24] are very small compared to the facter20—30 differ- not have a profound influence on the wakefield. In this case
ence between th€ found for a wake potential and for a the eigenvaluea to the matrix.A will determine the nature
Yukawa potential. This shows that a crystal in a streamingdf the solution. FromjAZ— A|=0 we obtain the two eigen-
plasma requires a much higher dust temperature before mekalues

1 1+K>2
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1 yM [=A_=Xg Ai+Xg

Ai—A_M?—€ —N_—Ng A, +Ag|
(A7)

1 -
= —p1 —

where N =M2(1+k?®)—1—€e(1+2k?) and A,={[1
—M?(1+k?) + €]+ 4M?k?}12, The quadratic form inside
the curly brackets assures only raglwith A ,> =\, for all

k and e. In this paper we will consider only plasma flows
whereM?> ¢ or flowing velocities are larger than the ion-
thermal velocity. For this condition, which normally is ful-
filled for dust in gas discharges due to a low ion temperatur
we havel .= and\_<0 for all wave numbergsee Eq.

U=[G;,G,]"=P 'u, while £ is the diagonal matrix
diag(\ . ,\A_). From the diagonalized systelq. (A5)] we
see that the solution with eigenvalhe will be elliptic since
e>\+/0 while the eigenvalua <0 gives a hyperbolic so-
lution. The latter of these solutions is the most interesting

(A2)]. one, since it is responsible for spatial oscillations and attrac-
The next step is to diagonalize the matrik where the tive inter-particle forces.

diagonalizing matrixP and its inverseP~* are found from I the case of an undamped wake=0), the two equa-

the eigenvalues. After some calculations we obtain tions in Eq.(A5) will be decoupled. However, whep+0,

the suggested transformation no longer decouples the equa-

tion. For relatively smally values we suggest using an itera-

tion procedure to calculane This procedure mvolves d|V|d—

ing the matrix B= BD+B 4 into matrixes BD and Bnd

and including diagonal and nondiagonal terms, respectively. The
1 1 N+ solutionuX™?! at stepk+1 may then be calculated from the

Ne=A_|1 A_+\g|’ solutionuX at the previous step, as

~A_—Ng NitXg

1 1 (A3)

.

Ppi= (A4)

where\o=(M2—¢€) “1(1+ ek?). Equation(A1) may then be

2~k+1_ pk+1, 3 o Tk+1
transformed to dzu LU "+ Bpdzu

92U= LU— Bo—m~ ¥ tex] —(Z2—Z;)% a?]f (k)b,

(A5) =— 7 35 Yex] —(Z—Z;)? o?]f (K)b— Byad .
(A8)
where
TP lp— Q1 i+ ek?(M?—¢) Herek=0,1,. .. N,ax With initial solutionU°=0. The left
Qo] A=A |[N_+ek?(M?—¢)]| hand side of Eq(A8) yields decoupled equations, and may

(AB) therefore be inverted easily.
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