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Heating and phase transitions of dust-plasma crystals in a flowing plasma

Frank Melandso”*
The Auroral Observatory, University of Tromso”, N-9037 Tromso”, Norway

~Received 6 December 1996!

A three dimensional particle simulation is used to study hexagonal dust crystals in flowing plasmas. The
flowing velocity v0 is mesothermal (vTi,v0,vTe), which is a typical situation for dust particles confined in
industrial plasmas and plasma experiments. Unlike for the Yukawa system~Debye-Hückel shielded dust!, we
find parameter regimes where a hexagonal dust crystal is stable. This is due to the wakefield generated around
the individual particles which causes attractive interparticle forces along the axis of the plasma flow. These
attractive forces cause a rather strong binding of the crystal since the simulation shows that solid-fluid transi-
tions occur at a much lowerG value ~higher dust temperature! than for the Yukawa system. Stability of a
hexagonal dust crystal is found to depend strongly upon the gas neutral pressure since stable crystal structure
is obtained for dust-neutral collision frequenciesgd above some threshold valuegd0. Forgd,gd0 the ion flow
will excite crystal waves~phonons! where the amplitude of these waves grows as a function of time. This
instability will either saturate due to nonlinear lattice waves or continue until the dust crystal structure even-
tually melts.@S1063-651X~97!02106-5#

PACS number~s!: 52.35.Qz, 52.65.2y, 52.40.Hf, 52.25.Kn
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I. INTRODUCTION

A Yukawa system, or system of charged partic
shielded by a Debye-Hu¨ckel potential, has previously bee
studied by computer simulations in several papers@1–3#.
Such a system provides a good model for dust particles
bedded in a stationary plasma or in a flowing plasma, as l
as the flow velocityv0 ~relative to the dust! is considerably
smaller than the ion thermal velocityvTi. However, asv0
becomes comparable to or larger thanvTi, an asymmetrical
shielding potential occurs around the individual particles,
both subsonic and supersonic flows with respect to the
acoustic velocityci @4–6#. This implies that a dust particle in
industrial plasmas and plasma experiments very seldom
be modeled as a Yukawa system, since dust normally is c
fined in the regions withv0.vTi ~in the sheath or at the
sheath edge! @7#.

In this paper we introduce a new method for finding t
wake or asymmetric potential around dust particles in a m
sothermal plasma flow. The method involves computing
eigenvalues to the flow model, which again are used to
couple the linear equations. A linear model for a mesoth
mal plasma wake contains both an elliptic and a hyperb
solution @4,5#. The elliptic solution gives a purely repulsiv
potential between dust particles inserted in this plasma, w
the hyperbolic solution has been suggested to cause at
tive interparticle forces@8#, due to its oscillating nature. It is
also believed that the hyperbolic solution, describing io
acoustic waves excited by the charged dust object, may
the explanation for the observed vertical alignment of d
particles@6,9# in plasma experiments. Here the dust particl
typically, form hexagonal lattices where the particles in

*Electronic address: frank@phys.uit.no
551063-651X/97/55~6!/7495~12!/$10.00
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dividual hexagonal layers align under each other@10–12#.
We examine the stability of such a hexagonal crys

structure by a three dimensional~3D! particle simulation.
Plasma simulations like these have previously been app
to 2D crystals@9#. This simulation is, however, the first sel
consistent 3D simulation using the interparticle forces g
erated by the plasma flow. Our simulation shows, for
stance, that hexagonal crystal structures may be stable
sufficiently high neutral pressure. Stability of such a crys
structure will, of course not be found from a Yukawa mod
since the stability is strongly correlated to the wakefie
around the individual dust particles. To calculate the plas
potential we have to take into account the wakefield from
large number of dust particles, since the individual wak
fields will superpose and create an interference pattern. T
interference pattern is calculated using periodic bound
conditions.

A very interesting result obtained from the simulations
excitation of crystal waves for a sufficiently low neutral pre
sure. This observation is in accordance with models p
sented in Refs.@13# and@14#. The simulations also show tha
this instability has a profound influence on the dust tempe
ture, and may in some cases melt the dust crystal. It sho
be noticed that self-excited dust waves also have been
served in experiments@15,16#. Waves like these are likely to
be either ionization waves or dust-acoustic-like waves driv
by the ion flow @15,16#. Recently Refs.@17# and @18# have
pointed out that dust-acoustic flowing instabilities may
present for parameters typical for industrial plasmas a
plasma experiments, where both papers were conside
weakly coupled dust particles characterized by the Coulo
coupling parameterG!1. Flowing instabilities for weakly
coupled dust particles have also been investigated by
@19#, using a particle-in-cell simulation. For this paper w
show numerically that flowing instabilities are also presen
strongly coupled dust plasmas (G>1), and that this instabil-
7495 © 1997 The American Physical Society
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7496 55FRANK MELANDSO”
ity may have a profound influence on both the crystal m
ing and the final dust temperature.

II. DUST-PLASMA MODEL

The plasma, in our quasiparticle approach, will be d
scribed by a two-fluid model including flowing ions an
Boltzmann electrons with temperatureTe and densityne .
The 3D ion flow is characterized by densityni and velocity
vi which are computed from continuity and force equatio
This force equation includes electrostatic force, press
force from adiabatic ions with temperatureTi , and ion-
neutral drag. We will cast the fluid equations into dimensio
less forms

]TNi1“X•~NiV i !50, ~1!

]TV i1V i•“XV i5“XF2e
1

Ni
“Ni2gV i ~2!

by introducing normalized variablesT5vpit, X5x/lD ,
V i5vi /ci , Ni5ni /n0, andF52ef/KTe . Time t has here
been normalized by the ion plasma frequen
vpi5@e2Zin0 /(e0mi)#

1/2, wheren0 is the electron density a
the plasma potentialf50. Distance is normalized by th
electron Debye lengthlD5@e0KTe /(e

2n0)#
1/2, and velocity

by the cold ion-acoustic velocityci5@ZikBTe /mi #
1/2. In Eq.

~2! we have also introduced the two normalized variable

e53Ti /~ZiTe! and g5n i /vpi ~3!

giving the ion-electron temperature ratio and dimensionl
ion-neutral collision frequency, respectively.

Equations~1! and ~2! may now be combined with Pois
son’s equation, where the space charge contribution from
dust particles is included byN diffuse objectssj (x) multi-
plied by their charge numberZj . Heresj is normalized with
respect to the physicalx space. In theX space the Poisso
equation yields

¹X
2F5Ni2exp~2F!1(

j51

N
Zj

n0lD
3 Sj~X!, ~4!

where it is convenient to introduceSj5lD
3 sj normalized

with respect to the new dimensionlessX space
@*Sj (X)dX51#.

To simulate the dust particles we will use a Gauss
distribution

Sj5S~X2X j !5
1

s3p3/2exp@2uX2X j u2/s2#. ~5!

Such a distribution may, to some extent, simulate finite si
dust particles where the parameters corresponds to the dus
size in units oflD . It is also practical for numerical reason
to use a finite distribution, since the plasma potential
tained from Eq.~4! will be nonsingular in the particle loca
tion.

We now separate the linear and nonlinear parts of E
~1!–~4! by introducing the deviations N15Ni21,
V15V i2V0, andF15F from a homogeneous backgroun
flow given byNi51, V i5V0, andF50. The disturbances
-
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created by the dust particles are assumed to be small, so
nonlinear terms may be neglected. For a stationary fl
(]T50) with Mach numberM parallel to theZ direction, we
obtain, after combining Eqs.~1! and ~2!,

M2]Z
2N152¹X

2F11e¹X
2N12gM]ZN1 , ~6!

¹X
2F15N11F11(

j51

N
Zj

n0lD
3 S~X2X j !. ~7!

III. ISOLATED DUST PARTICLE

A. Point particle

To solve the fluid equations we will first compute th
Green solution where the sum( j51

N ZjS(X2X j ) in Eq. ~7! is
substituted with24pd(X2X j ). For simplicity we will as-
sume thisd source to be located on theZ axis.

The first step of the solution procedure involves a Four
transformation û(k,Z)5(4p2)21*u(X)exp(2ik•R)dR
over the directionR5(X,Y) perpendicular to the flow, with
wave numberk5(kX ,kY). Equations~6! and~7! then reduce
to two coupled ordinary differential equations,

M2]Z
2ĜN52ĜN2ĜF1p21d~Z2Zj !1e]Z

2ĜN2ek2ĜN

2gM]ZĜN , ~8!

]Z
2ĜF5k2ĜF1ĜN1ĜF2p21d~Z2Zj !, ~9!

where ĜN and ĜF are the Fourier transforms of the io
density and plasma potential, respectively.

It is shown in Ref.@4#, which neglected ion-neutral colli
sions (g50), that Eqs.~8! and ~9! contain both an elliptic
and a hyperbolic solution. We will show in the Append
how these two types of solutions may be decoupled
g50, where the equation set~8! and ~9! reduces to

]Z
2Ĝ15l1Ĝ12p21q1d~Z2Zj !, ~10!

]Z
2Ĝ25l2Ĝ22p21q2d~Z2Zj !. ~11!

Here @Ĝ1 ,Ĝ2#
T relates to the Green functions a

P21@ĜN ,ĜF#T whereP is the transformation matrix given
in the Appendix@see Eq.~A3!#. The termsl1 andl2 are the
eigenvalues for the linear flow equations@Eq. ~A2!# while
q1 andq2 determine the influence of thed source, as shown
in Eqs. ~10! and ~11!. The source coefficients given by Eq
~A6! may be written as

q15
1

l12l2
S l11

ek2

M22e D ,
q25

1

l12l2
S l21

ek2

M22e D . ~12!

l1 , l2 , q1, and q2 will all be functions of the wave
numberk, the Mach velocityM , and the temperature rati
e given in Eq. ~3!. Simplified asymptotic solution forl6

may also be found for small and large wavelengths. F
k.0 we get
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l6.
M22e216uM22e21u

2~M22e!
~13!

while ask→`, the eigenvalues approach

l1.11k2 and l2.2
11ek2

M22e
. ~14!

Further on, we will assumeM2.e, which normally is the
case in the regions where dust is confined in gas dischar
This is due to a lowTi /Te ratio combined with dust confine
ment in the sheath or in the presheath where the plasma
a significant flowing velocity towards the electrodes. Fro
the Appendix, this yieldsl1>0 andl2<0 for all k values
where Eqs.~10! and~11! are elliptic and hyperbolic, respec
tively. Solutions of these equations can easily be obtain
assuming an infiniteZ direction, with boundary conditions
Ĝ1(2`)50, Ĝ1(`)50, Ĝ2(2`)50, and]ZĜ2(2`)50
consistent with the elliptic and hyperbolic nature ofĜ1 and
Ĝ2, respectively. This yields

Ĝ15
1

2p
k1

21q1exp~2k1uZ2Zj u!, ~15!

Ĝ25H p21k2
21q2sin~k2uZ2Zj u! if Z>Zj

0 if Z,Zj ,
~16!

where k15Al1 and k25A2l2. Finally the Green func-
tions are found from the transformatio

@ĜN ,ĜF#T5P@Ĝ1 ,Ĝ2#
T and by using the inverse Fourie

transform. Since the solution is symmetric with respect to
Z axis, it may be written as the integrals

GN522pE
0

`

k~l21l0!Ĝ1J0~kR!dk

12pE
0

`

k~l11l0!Ĝ2J0~kR!dk, ~17!

GF52pE
0

`

k~Ĝ12Ĝ2!J0~kR!dk ~18!

over thek space whereJ0 is the Bessel function of orde
zero. These integrals must in general be found numerica

Convergence of integrals~17! and ~18! can be investi-
gated by inserting asymptoticall values@Eq. ~14!# in Eqs.
~17! and~18! together withq1.1 andq2.21/(M2k2) cor-
responding to largek values. This shows that integral~18! is
convergent for allM ande values, except for on theZ axis
whene50. This is also in agreement with the result in R
@4#. The integral~17! is also divergent on theZ axis, even
with a finite ion temperature (eÞ0). We will show in the
next section that the divergencies in both of these integ
may be removed by using dust particles with finite size.

B. Gaussian particle

We will now consider solutions from a Gaussian distrib
tion S(X2X j ) @Eq. ~5!# inserted into Poisson’s equation@Eq.
~4!#. Unlike for thed solution, we will also include the cas
es.

as

d,

e

.

.

ls

-

when the dust object is not centered on theZ axis. This
enables us to calculate the total potential field from regu
dust crystal structures such as bcc and hexagon, where
odic boundary conditions are applied, and where some of
particles are off theZ axis.

The solution from a single Gaussian given by Eq.~5! may
be found by the same procedure as for thed solution. The
N particle source in Eq. ~4! is replaced with
24pS(X2X j ) and Fourier transformed over the directio
perpendicular to the flow (X andY direction!. The Fourier
transformed equations may then be decoupled into an elli
(Ĝ1

S) and a hyperbolic (Ĝ2
S) part @corresponding to Eqs.~10!

and ~11!# in the same way as for thed solution. This gives

]Z
2Ĝ1

S5k1
2Ĝ1

S2
q1

p3/2s1/2expS 2
DZ2

s2 D f ~k!, ~19!

]Z
2Ĝ2

S52k2
2Ĝ2

S2
q2

p3/2s1/2expS 2
DZ2

s2 D f ~k!, ~20!

where the indexS indicates solution from a Gaussian sourc
Here we have introducedDZ5Z2Zj and

f ~k!5exp~2k2s2/4!exp~2 ikXXj2 ikYYj !. ~21!

Solution of these two equations may now be found using
same boundary conditions as for thed solutions

@Ĝ1
S(2`)50, Ĝ1

S(`)50, Ĝ2
S(2`)50, and ]ZĜ2

S(2`)
50#, which gives

Ĝ1
S5

q1
4pk1

expS k1
2s2

4 D f ~k!Fexp~2k1DZ!erfcS k1s

2
2

DZ

s D
1exp~k1DZ!erfcS k1s

2
1

DZ

s D G , ~22!

Ĝ2
S52

q2
2pk2

expS 2
k2
2s2

4 Dexp~ ik2Dz! f ~k!

3ImFerfcS 2
DZ

s
2 i

k2s

2 D G ~23!

written in terms of the complementary error functio
erfc(z)52p21/2*z

`exp(2t2)dt. Here Im denotes the imagi
nary part of the complex function. Finally these solutio
give the density and potential values through the inve
Fourier transform

GN
S52E ~l21l0!Ĝ1

Sexp~ ik•R!dk

1E ~l11l0!Ĝ2
Sexp~ ik•R!dk, ~24!

GF
S5E ~Ĝ1

S2Ĝ2
S!exp~ ik•R!dk. ~25!

The function f (k) @Eq. ~21!# will now assure that both of
these integrals are convergent forsÞ0.
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IV. WAKE INTERFERENCE
IN A HEXAGONAL PLASMA CRYSTAL

We will in this section consider the wakefield generat
by dust particles in regular dust lattices. Regular dust latti
are frequently observed in dust-plasma experiments due
large electrostatic energy between the individual partic
Length scales characterizing the spatial periodicity of th
crystals are often much smaller than the total extension
the crystal. This allows us to calculate the solution us
periodic boundary condition in a computational domain li
ited byLX , LY , andLZ , to simulate a medium with infinite
extension.

A. Periodic boundary conditions

A plasma potentialFp obtained from periodic boundarie
may, in principle, be calculated from Eq.~25! by summation
over theN Gaussian particles inside the computation d
main, and all images of these particles outside the comp
tion box. From a numerical point of view, this method w
be enormously time consuming since it requires summa
over a large number of particles due to the slow decay of
hyperbolic part of the solution. Instead we suggest expand
the solutions as Fourier series in theX andY directions, or

u~R,Z!5(
l ,m

ũ~ l ,m,Z!expS 2p i lX

LX
1
2p imY

LY
D , ~26!

which implies periodic boundaries in theX-Y directions.
We will limit ourselves to using distributions with spatia

width s considerably smaller than the size of the compu
tion box. In this case the Fourier coefficients toS will be
approximately equal to the one obtained from a Fou
transform. The Fourier coefficientsG̃1 andG̃2 for the elliptic
and hyperbolic part of the solution may therefore be fou
from the previous result, by substitutingkX and kY with
2p l /LX and 2pm/LY , respectively. We also have to solv
Eq. ~A8! with periodic boundaries in theZ direction instead
of the previous boundaries at infinity.

In Fig. 1 we show a wake field produced from period
boundary condition in all directions. We have here used t
particles atX05(0,0,0) andX15(LX/2,LY/2,0) as shown in
the uppermost figure. When we useLX5A3a, LY5a, and
LZ5d, these two particles will, together with the period
boundaries, be equal to an infinite hexagonal crystal.
particle distance within the hexagonal layer will bea while
d is the separation distance between the different layers.
show the wakefield or interference pattern, in planes para
to theX-Y plane, at four different distancesL from the up-
stream layer. AtL51 we observe cylindrical symmetri
waves in the vicinity of the dust particles~at the center and a
the edges! superposed on an interference field.

The interference field becomes dominant atL52 and
L53 where a hexagonal interference pattern can be seen
example, in the shape of the plateau in the center of
figure atL52. It is interesting to notice that this plateau h
the same shape as the Brillouin zones for electromagn
wave diffraction produced by a hexagon.

As an illustration of how the wakefield changes when
interplane distancea is reduced, we have recalculated Fig.
s
a

s.
e
of
g
-

-
a-

n
e
g

-

r

d

o

e

e
el

for
e

tic

e

with a52 instead ofa54. The result is shown in Fig. 2
where we notice a significant reduction in the interferen
field generated by the neighbor particles, compared to Fig

We have also shown in Fig. 3 how the interference fie
might look, considering a supersonic plasma flow w
M51.5. The other parameters in this figure are the sam
for Fig. 2. Ion-acoustic wave interference is also seen in F
3, although these are smaller than for the corresponding
sonic flow in Fig. 2. A larger interference field may also
obtained for supersonic flows, by increasing the separa
a. This is illustrated in Fig. 4, where we have used the sa
parameters as in Fig. 3, but increaseda to 4. This figure
yields a rather complex plasma potential.

B. Plane wave solution

If we consider a subsonic flow and reducea from the
value of 2 used in Fig. 2, to values close to 1, the wakefi
becomes less complex, and is close to a plane wave pr
gating in the direction of the plasma flow (Z direction!.
These kinds of waves occur only for subsonic flows. F
supersonic flows we obtain mainly an exponential damp
plasma potential asa approaches 1.

This numerical result can be understood in view of t
Fourier transformed equations given in Sec. III A. Pla
wave solutions may be found by assuming that the m
contribution to the wake comes from wave numbersk close
to 0. In this limit we getq1.0 andq2.21 from Eq.~12! in
the case of a subsonic flow. Supersonic flows, on the o

FIG. 1. The plasma potential obtained from ion-acoustic wa
interference generated by an infinitely large hexagonal dust cry
The figures show the wake potentialGF

p (X0)1GF
p (X1) in planes

perpendicular to the plasma flow at distancesL ~indicated in the
figure! from the upstream layer. One should notice that the figure
L54 is scaled differently than the others. The calculation is do
for a subsonic plasma flow with Mach numberM50.5 while other
parameters area54, d54, e50.1,s50.2, andg50.075.
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hand, yieldq1.1 andq2.0. Sinceq1 andq2 determine the
source@see Eq.~12! or ~A6!# for the elliptic and hyperbolic
part of the solution, respectively, this shows that plane wav
may only exist for subsonic flows. The valuek50 also
gives, from Eq.~13!, a plane wave number

FIG. 2. Plasma potential given by the wake potentia
GF

p (X0)1GF
p (X1). The calculation is done for the same paramete

as in Fig. 1, but witha52.

FIG. 3. Plasma potential obtained from a supersonic plasm
flow with M51.5. The other parameters are the same as in Fig.
s

k05A2l25S 12M21e

M22e D 1/2 ~27!

obtained from the negative eigenvalue@see Eq.~13!#. It is
also possible to estimate the damping rate of the plane w
due to ion-neutral collisions. This can be done by neglect
the nondiagonal term in Eq.~A8!, which yields the damping
frequency

g05gM
12M21e

2~M22e!
. ~28!

To find the plane wave solution itself, we will assum
small dust particles (s!1) where an undamped solution
approximately equal to thed solution given by Eq.~16!. A
weakly damped version of this solution generated from
Fourier series instead of a Fourier transform gives the pl
wave solution

GF
p 52

8p

A3a2k 0
(
n50

`

exp@2g0~DZ1nd!#sin@k0~DZ1nd!#

~29!

for a hexagonal crystal. Each term in this sum gives
electrostatic contribution from a hexagonal layer at dista
nd. For g0.0 this sum will be convergent and gives

GF
p 52

8p

A3a2k0

1

D
$exp~2g0DZ!sin~k0DZ!

1exp@2g0~DZ1d!#sin@k0~d2DZ!#%, ~30!

where

l
s

a
2.

FIG. 4. Calculations done for the same parameters as in Fig
but with a54.
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D5122exp~2g0d!cos~k0d!1exp~22g0d!.

From the solution we notice that the amplitude ofGF
p will

maximize at distancesd where k0d5n2p (n51,2, . . . ).
This will be the resonance criterion for the hexagonal crysta
which states that the plasma disturbance will maximize whe
the layer distanced is equal to an integer valuen multiplied
by the natural wavelength of the plane wave.

In Fig. 5 we compare the values obtained along theZ axis
from the numerical 3D solution, with the plane wave solu
tion @Eq. ~30!#. For the parameters we refer to the figure
caption. The solutions fora52 show some deviation while
relatively good agreement is obtained fora51, which indi-
cates an almost plane wakefield for the latter particle spa
ing.

V. EXCESS ENERGY

An interesting parameter to determine is the excess e
ergyUex or the energy in excess of the thermal energy of th
dust particles. This parameter is interesting since it provide
useful information about the thermodynamics of the studie
system. For the Yukawa system the excess energy is found
be a function of the parameters

G5Q2/~4pe0DKTd! and k5D/lD ~31!

@2,3#, whereD is the average spacing between the dust pa
ticles andTd is the dust temperature. However, for dust crys
tals in mesothermal flows, the number of independent param
eters increases. For the quasiparticle model used in this pa
the ion flow field depends on the parametersM , s, e, and
g @see Eq.~3!#. All of these parameters will now, in addition
to G andk, determineUex.

We will adopt the definition forUex used in Refs.@2# and
@3#. In terms of our Green’s functionGF

p wherep refers to
periodic boundaries, this energy may be written as

FIG. 5. The plane wave solution@Eq. ~30!# compared to the
numerical 3D solution on theZ axis, for a51 anda52. Other
parameters which are constant areM50.5, e50.1, g50.075,
s50.2, andd55.
l
n

-

c-

n-
e
s
d
to

r-
-
-

per

u5
Uex

NKTd
5GF k

2N (
i51

N

(
j51

N

GF
p ~X i ,X j !2

3

2k2 2
k

Aps
G .
~32!

Here the first term on the right hand side of Eq.~32! gives
the average electrostatic energy of the system. From this
ergy we have to subtract the self-energy which has a fin
value forsÞ0 @last term on the right hand side of Eq.~32!#.
We also subtract the electrostatic contribution from a un
form charged background@second term on the right hand
side of Eq.~32!#. This background term is used in Refs.@2#
and @3# to get accordance with previous results for a on
component plasma~OCP! in the limit k→0.

Figure 6 shows the ratio between the excess energyu @Eq.
~32!# and the parameterG as a function of the separation
distanced between the hexagonal layers. The upper a
lower figures showu/G for a subsonic (M50.5) and super-
sonic flow (M51.5), respectively, calculated for three dif
ferenta values (a51, 2, and 3). In the calculations the dus
particles are at rest in the equilibrium positions of a hexag
nal dust crystal, and the energy is therefore identical to t
so-called Madelung energy for the crystal. Thermal motio
and crystal phonons will changeu ~see Refs.@1–3#! so that
the values given in Fig. 6, computed from a stationary cry
tal, only apply to low temperature dust crystals. Other p
rameters are found in the figure caption.

In the upper part of Fig. 6 we notice several jumps o
abrupt changes inu/G. These jumps correspond to resonanc

FIG. 6. The ratio between the Madelung energyu andG as a
function of the distanced between the hexagonal layers. Here th
upper figure shows calculations done fora51, a52, anda53,
using a subsonic flow velocity (M50.5), while the lower figure
showsu/G ratios for a supersonic flow (M51.5). In both figures
we have used the parameterse50.1,g50.075, ands50.2.
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distances or distances for constructive interference wh
waves generated by the individual particles will be in pha
Fora52, for example, we observe local minimum values
u/G at distancesd;1.2, 1.7, 2.9, 3.4, . . . . By using
particle simulation, it is possible to show that hexagonal
tices withd close to some of these minimum values will b
stable. Asa is reduced to 1 the number of main resonan
reduces to 2~aroundd52.9 and 5.6). This is mainly becaus
we reduce the complexity of the wave by bringing the p
ticles within the hexagonal layer closer together. At the se
ration distancea51, the generated wakefield will be near
a plane wave, as shown in Fig. 5. We also get relatively g
agreement between the observed minimum value foru/G
(d;2.9 and 5.6) and theoretical values for the first two re
nance distances obtained from Eq.~27! (d52p/k0.2.63
and 4p/k0.5.26).

The lower Fig. 6 shows a much less complex behavio
u/G where all curves obtain only a single minimum valu
Wave resonances as in the upper figure, which produc
large number of minimum values foru/G, are not seen, eve
if d is increased above the maximum value of 8 used in
figure. The reason for this is that the characteristic wa
lengths in the supersonic wake are much larger than the
in the subsonic wake. The resonance distances will there
be located much farther away from the dust particles wh
the wakefield will be significantly damped for the ion-neut
collision frequencyg50.075 used. By reducingg to, for
instance,g50.0375, we are able to observe several mi
mum values foru/G in the same way as for the upper figur

VI. PARTICLE SIMULATION

Numerical simulations have previously been used to st
the Yukawa system where, for instance, the excess en
may be found from simulation together with critical valu
for the parametersG and k @see Eq.~31!# causing phase
transition. Similar methods may now be used to study
flowing plasma system, which has a microscopic shield
potential of the dust particles very different from the Deby
Hückel potential. We will exemplify how the differences b
tween the microscopic potential for these two syste
change the stability of hexagonal crystals and the criticaG
value for melting of the crystal.

In the plasma simulation the dust particlej is moved due
to the electrostatic force acting on the particle. The fo
equation may be written in terms of the dimensionless v
ablesX, F, andt5vpdt as

d2X j

dt2
5
en0
Qn

“XF~X j !2gdV j1fd . ~33!

The time t is normalized with respect to the dust-plasm
frequency given in terms of the dust particle chargeQ, mass
M , and densityn, asvpd5@(Q2n)/(e0M )#1/2. The dimen-
sionless velocityV j and collision frequencygd relate to their
physical values vj and nd , as vj5lDvpdV j and
nd5vpdgd , respectively. We have also included a collisi
term @second term on the right hand side of Eq.~33!# simu-
lating dust-neutral collisions and a forcefd which is equal,
but opposite, to the average electrostatic force acting on
particle @ fd52(en0 /Qn)( j“XF(X j )/N#. This force will
re
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prevent the total crystal structure from being moved by
ion drag, but will, at the same time, not influence the th
modynamical properties of the crystal, since the same fo
is acting on all particles.

The electrostatic force may be computed from the pe
odic Green’s solutionGF

p by adding up the contributions
from theN diffuse objects

F~X j !52
1

4plD
3 n0

(
i51

N

ZiGF
p ~X j ,X i !. ~34!

We will now assume that the number of unit chargesZi on
the dust particle are constant and the same for all dust
ticles. If we insert this equation in Eq.~33! and expressn in
terms of the Wigner-Seitz radiusD (4pD3n/351), we ob-
tain

d2X j

dt2
52

k3

3
“X(

i51

N

GF
p ~X j ,X i !2gdV j2fd , ~35!

wherek5D/lD . For a hexagonal crystal this parameter m
be expressed in terms of dimensionless crystal dimens
a andd ask5@3A3a2d/(8p)#1/3.

Equation~35! is integrated using a Runge-Kutta metho
of order 4. For each time step we calculatedGF

p (X j ,X i) by
using a 3D cubic spline interpolation on the wakefie
GF
p (0,X) of a particle placed in origin. This wakefield i

computed initially in the program and stored in a
NX3NY3NZ matrix whereNX , NY , andNZ are the number
of uniform discrete values used in theX, Y, andZ directions,
respectively.

In the numerical examples we initially place the dust p
ticles in a hexagon with dimensionsa and d so that the
u/G ratio is in the vicinity of one of the local minimum
positions shown in Fig. 6. The dust particles are also initia
given a random velocity, picked from a Maxwellian distrib
tion. The dust temperatureTd of the distribution is defined as
usual, in terms of the statistical variance 3NKTd/2
5(M /2)( j (V j2^V&)2 where^•& denotes the average valu
In terms of our dimensionless parameters and from Eq.~31!,
this relation yields

G5
k2

^V2&2^V&•^V&
. ~36!

The dust temperature may therefore initially be specified
a G value (G0). In the simulation we will also normalize th
thermal energy 3NKTd/2 in the same way as we did for th
excess energy@see Eq.~32!#. This yields

uk5~3NKTd/2!/~NKTd!53/2. ~37!

A. Subsonic plasma flows

We will first use the particle simulation to look at du
crystals in a subsonic plasma flow with Mach numb
M50.5. A typical result is shown in Fig. 7 where we in
tially placedN5128 particles in a hexagon structure wi
dimensionsa52 andd53.41, and given them Maxwellian
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FIG. 7. Particle simulation whereN5128 dust particles att50 are placed in a hexagonal structure with dimensiona52 and
d53.41. The dust particles are initially given velocities picked from a Maxwellian velocity distribution with temperature correspon
G5200. Here the upper left figure shows the time evolution for the ratiosuk /G and (u2u0)/G whereuk andu are the normalized kinetic
energy and excess energy~with valueu0 at t50), respectively, whileG is the Coulomb coupling parameter. The evolution of the latter
these parameters is shown in the upper right figure together withG values perpendicular (G') and parallel (G i) to the plasma flow. The
middle figures show the particle trajectories fromt50 until t540. Here we show in the left the dust trajectories as seen from the
(X-Y plane! where only trajectories from a single dust layer are viewed. A similar side view is shown in middle right figure (X-Z plane!. In
the lower figures we show the particle trajectories in the remaining part of the simulation~from t540 until t5100) in the same way as fo
the middle figures. The other parameters used in the simulation aree50.1,g50.075,s50.2,M50.5, andgd52.3.
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velocities corresponding toG5200. The dust-neutral colli-
sion frequency isgd52.3 while other parameters are foun
in the figure caption.

The upper left figure shows the evolution of rati
uk /G53/(2G) and (u2u0)/G as a function of time where
u is the normalized excess energy@Eq. ~32!# with valueu0 at
t50. The upper right figure shows the parameterG as a
function oft @calculated from Eq.~36!# in addition toG i and
G' which are calculated as in Eq.~36!, but withV replaced
with the velocity components parallel and perpendicular
the plasma flow direction. In the middle figures we ha
shown a top view~left figure! and side view~right figure! of
the trajectories generated by particles in a single layer fr
o

m

time t50 until t540, while the lower figures show particl
trajectories similar to the middle figures fromt540 until
t5100.

In the initial part of the simulation, fromt50 to;5, we
get a period where the dust temperature decreases (G in-
crease in upper right figure!. The dust temperature then star
to increase which corresponds to a decrease in the param
G, from 104 at t;5 to 10 att;40. We also notice from the
upper right figure an almost exponential increase in the te
perature in this period, and that the crystals still have
melted att540, as indicated by the middle figures. Th
reason for the observed increase in the dust temperatu
unstable crystal waves~phonons! excited by the flowing
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FIG. 8. Particle simulation done in supersonic flow withM51.5. The layer separation isd51.32 while the dust-neutral collision
frequency isgd55.0. All other parameters are the same as in Fig. 7. Here the middle and lower figures show particle trajectori
0<t,25 and 25<t<50, respectively.
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ions. Fromt;40 until;55, the crystal starts to melt with
significant reduction in the crystal wave instability. Aroun
t;55 there is another jump in theG value and the instability
finally saturates aroundG;1. From the lower figures we
also see that during the last part of the simulation~from
t540 until t5100), the crystal becomes completely melte
We also notice that the particles mainly move parallel to
X direction during the melting, which is an indication o
crystal waves excited in this particular direction. Wave a
tivity in the X direction is probably also the reason for th
nonuniform distribution of particles indicated by the low
figures.

B. Supersonic plasma flows

The dynamic of dust particles may also be simulated
supersonic plasma flows. An example is shown in Fig.
where we have used the parametersM51.5, a52,
d51.32, andgd55, while the other parameters are the sa
.
e

-

n
,

e

as for Fig. 7. These parameters give au/G ratio in the vicin-
ity of the minimum value shown in the lower Fig. 6. In th
simulation we have used a dust-neutral frequencygd55
which is well below the threshold frequencygd0 for excita-
tion of unstable crystal waves. Unlike the previous simu
tion, we notice that this instability saturates before the crys
melts. The saturation mechanism here is likely to be o
nonlinear nature. This is because the first part of the in
bility suggests an exponential growth which gradually dim
ishes as the dust particle oscillation becomes large, or a t
cal behavior for systems which are linear unstable
nonlinear stable. This kind of nonlinear stabilization w
only seen in the supersonic case.

If we reduce the dust-neutral collision frequency
gd52 as shown in Fig. 9 we see that nonlinear effects are
longer able to stop the lattice wave instability, and the ins
bility melts the crystal in the same way as in Fig. 7. Simi
to the simulation in this figure, we now also get saturation
the instability after melting.



7504 55FRANK MELANDSO”
FIG. 9. Particle simulation done for the same parameters as in Fig. 8, but withgd reduced to 2.5.
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VII. CONCLUSION

We have in this paper shown that our 3D quasiparti
simulation provides good agreement with several experim
tal results on dust particles confined in gas discharges. D
plasma experiments show, for instance, that particles ea
crystallize in hexagonal layers aligned on top of each ot
@10–12#. Stable crystal structures like these are also obtai
in the particle simulations as shown in Fig. 8. Stable solut
is also found for the parameters used in Fig. 7, if we incre
the dust-collision frequencygd from the value of 2.3 used to
values>2.6. We have also tested the stability in the vicin
of other local minimum values ofu/G shown in the upper
Fig. 6, and obtained stable solutions for (a,d)5(1,3),
(2,1.7), and (3,6), when the dust-neutral collision frequen
gd is above some threshold valuegd0. This threshold will
vary between different crystal dimensions (a,d), and also
between simulations where we have kept (a,d) fixed, but
changed the number of hexagonal layers, or changed
number of dust particles within a layer.

When the dust-neutral collision frequencygd is below the
e
n-
st-
ily
r
d
n
e

y

he

threshold valuegd0, crystal waves with an increasing ampl
tude appear in the simulations. The initial phase of this
stability gives an exponential increase in the dust tempe
ture as, for example, shown from theG value in Fig. 7, from
t;5 until t;40. After this phase, the following two thing
might happen.

~1! The linear instability enters a nonlinear phase wh
the instability saturates before the crystal melts. An evolut
like this is shown in Fig. 8 and is only observed for supe
sonic flows.

~2! The instability manages to melt the crystal and sa
rates after melting, as shown in Figs. 7 and 9. Unlike case~1!
where the saturation mechanism is excitation of nonlin
lattice waves, we believe that this saturation is due to
melting itself. As the crystal melts, the phonons will grad
ally be lost in the crystal and the dust heating becomes
efficient. This also suggests that the streaming instab
gives a larger input to the dust kinetic energy in dust crys
than in melted or weakly coupled plasmas as studied in R
@17–21#.
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We believe that the observed crystal instability is driv
by the flowing ions due to wave-particle interaction betwe
the plasma fluid and the dust particles, or by the sa
mechanism as for the previously studied dust-acoustic fl
ing instability @17–21#. However, all of these papers we
only considering weakly coupled dusty plasmas which,
course, does not apply to our strongly coupled dust crys
A recent paper by Melandso” @22# shows, for instance, tha
the dispersion relation for dust-acoustic-like waves in a
Bravais lattice may be very different from the one obtain
in the weakly coupled limit.

The simulation results show that excitation of phonons
crucial for both the melting of the hexagonal crystal and
final dust temperature. How the final dust temperature co
lates to the instability can be tested by running simulatio
with differentgd values. Asgd reduces, the crystal instabi
ity grows faster with a resulting smallerG value~higher dust
temperatures! after saturation. It is interesting to notice th
excitation of crystal waves also explains the experiment
observed temperature increases in the horizontal plane
ported in Ref. @23#, in the melting ~liquid! and gaseous
phases. In these phases the dust temperature is found
significantly higher than the neutral gas temperature. Hea
and melting of the crystal in terms of excited phonons m
perhaps also explain why intermediate liquid phases can
stable, since the main energy input~excitation of phonons! is
gradually lost as the crystal melts and the particle mot
becomes increasingly incoherent.

Oscillation of dust particles, as an important factor f
phase transitions, has also previously been studied in R
@13# and@14#. Here they consider the stability of two cryst
layers with an intermediate ion cloud causing an attrac
force acting on dust particles in the downstream layer
should, however, be noticed that the stability analysis for
system assumes a pure Coulomb potential between the
ticles, and not the self-consistent potential generated by
plasma flow. The obtained results will therefore only app
to closely packed dust crystals (D!lD) since the interpar-
ticle potential deviates strongly from a Coulomb field wh
D>lD . This is, for example, clearly seen in Fig. 1, whic
corresponds toD.2.4lD .

Another interesting result obtained from Figs. 7 and 9
the criticalG valueGc for solid-fluid transition. Both figures
show Gc around;10, or much lower than values forGc
obtained in Ref.@3# for bcc crystals with the Yukawa poten
tial. Here they foundGc between;172 and 378 for the
parameterk between 0 and 1. However, a recent work
Rosenfeld@24# points out that theGc values given in Ref.@3#
are too large, both in view of previous simulations, analyti
techniques, and a significant error source detected in Ref.@3#.
Reference@24# suggestsGc values between;172 and 220
for thek range used, not far from the result obtained in R
@1#. We have also tested our numerical simulation by cha
ing the wakefield potential to a Yukawa potential and fou
Gc much closer to the one given in Refs.@1# and @24# than
the transition values given in Ref.@3#. However, it is inter-
esting to observe that the deviations between Refs.@3# and
@24# are very small compared to the factor;20–30 differ-
ence between theGc found for a wake potential and for
Yukawa potential. This shows that a crystal in a stream
plasma requires a much higher dust temperature before m
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ing than a Yukawa crystal, due to the attractive force in
plasma flowing direction.

An effect which is not incorporated in our model, main
due to increasing complexity and computation time, is d
charge variation. Dust charge variation is previously found
be important in weakly coupled dust-acoustic waves~DAW!,
and is therefore likely to be important also in dust crys
waves. This is because the dust charging happened in a
scale much faster than the oscillation period so that the d
charge manages to adjust to the variations in the surroun
plasma. For the DAW, for instance, charge variation is fou
to give a maximum correction of;20% in the wave phase
velocity, when the dust to electron space charge ra
uQN/eneu is ;1 ~see, for instance, Fig. 1 in Ref.@25#!. This
ratio corresponds to a HavnesP parameter@26# of the order
of 1. Previous studies of DAW have also shown that cha
variation have a stabilizing effect on streaming instabilit
~see, for instance, Ref.@21#!. However, this stabilizing effec
can probably be neglected in most industrial and experim
tal plasmas due to the small charging time of dust partic
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APPENDIX DECOUPLING OF THE WAKE EQUATIONS

As previously shown in Refs.@4# and @5#, the linear flow
equations@Eqs. ~6! and ~7!# contain both an elliptic and a
hyperbolic solution. We will in this appendix show ho
these two solutions may be decoupled. The decoupled s
tions are used to compute the wakefield generated by
particles in a plane perpendicular to the plasma flow dir
tion Z. Approximate solutions may also be found from th
decoupled solutions, for instance, for the plane wave solu
considered in Sec. IV.

The Fourier transform of the linear equations@Eqs. ~8!
and ~9!# may be written as the matrix system

]Z
2u5Au2B]Zu2p23/2s21exp@2~Z2Zj !

2/s2# f ~k!b.
~A1!

Here u5@ĜNi ,ĜF#T, b5@2(M22e)21,1#T, f (k)
5exp(2k2s2/4)exp(2ikXXj2ikYYj),

A5F2~11ek2!~M22e!21 2~M22e!21

1 11k2 G ,
and

B5
gM

M22eF1 0

0 0G .
We will consider cases where the ion-neutral drag d

not have a profound influence on the wakefield. In this c
the eigenvaluesl to the matrixA will determine the nature
of the solution. FromulI2Au50 we obtain the two eigen
values
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l65
1

2~M22e!
~l16l2!, ~A2!

where l15M2(11k2)212e(112k2) and l25$@1
2M2(11k2)1e] 214M2k2%1/2. The quadratic form inside
the curly brackets assures only reall2 with l2.5l1 for all
k and e. In this paper we will consider only plasma flow
whereM2.e or flowing velocities are larger than the ion
thermal velocity. For this condition, which normally is fu
filled for dust in gas discharges due to a low ion temperatu
we havel1> and l2<0 for all wave numbers@see Eq.
~A2!#.

The next step is to diagonalize the matrixA where the
diagonalizing matrixP and its inverseP21 are found from
the eigenvalues. After some calculations we obtain

P5F2l22l0 l11l0

1 21 G ~A3!

and

P215
1

l12l2
F1 l11l0

1 l21l0
G , ~A4!

wherel05(M22e)21(11ek2). Equation~A1! may then be
transformed to

]Z
2ũ5Lũ2B̃]Zũ2p23/2s21exp@2~Z2Zj !

2/s2# f ~k!b̃,
~A5!

where

b̃5P21b5Fq1q2G5
1

l12l2
Fl11ek2/~M22e!

l21ek2/~M22e!
G ,

~A6!
a

p

A

r-

.

e,

B̃5P21BP5
1

l12l2

gM

M22eF2l22l0 l11l0

2l22l0 l11l0
G ,
~A7!

ũ5@Ĝ1 ,Ĝ2#
T5P21u, while L is the diagonal matrix

diag(l1 ,l2). From the diagonalized system@Eq. ~A5!# we
see that the solution with eigenvaluel1 will be elliptic since
l1>0, while the eigenvaluel2<0 gives a hyperbolic so-
lution. The latter of these solutions is the most interest
one, since it is responsible for spatial oscillations and attr
tive inter-particle forces.

In the case of an undamped wake (g50), the two equa-
tions in Eq.~A5! will be decoupled. However, whengÞ0,
the suggested transformation no longer decouples the e
tion. For relatively smallg values we suggest using an iter
tion procedure to calculateũ. This procedure involves divid-
ing the matrix B̃5B̃D1B̃nd into matrixes B̃D and B̃nd
including diagonal and nondiagonal terms, respectively. T
solutionuk11 at stepk11 may then be calculated from th
solutionuk at the previous step, as

]Z
2ũk112Lũk111B̃D]Zũ

k11

52p23/2s21exp@2~Z2Zj !
2/s2# f ~k!b̃2B̃nd]Zũk.

~A8!

Here k50,1, . . . ,Nmax with initial solution ũ050. The left
hand side of Eq.~A8! yields decoupled equations, and ma
therefore be inverted easily.
,
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